Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biosens Bioelectron ; 194: 113588, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1372896

ABSTRACT

Ultrasensitive, versatile sensors for molecular biomarkers are a critical component of disease diagnostics and personalized medicine as the COVID-19 pandemic has revealed in dramatic fashion. Integrated electrical nanopore sensors can fill this need via label-free, direct detection of individual biomolecules, but a fully functional device for clinical sample analysis has yet to be developed. Here, we report amplification-free detection of SARS-CoV-2 RNAs with single molecule sensitivity from clinical nasopharyngeal swab samples on an electro-optofluidic chip. The device relies on optically assisted delivery of target carrying microbeads to the nanopore for single RNA detection after release. A sensing rate enhancement of over 2,000x with favorable scaling towards lower concentrations is demonstrated. The combination of target specificity, chip-scale integration and rapid detection ensures the practicality of this approach for COVID-19 diagnosis over the entire clinically relevant concentration range from 104-109 copies/mL.


Subject(s)
Biosensing Techniques , COVID-19 , Nanopores , COVID-19 Testing , Humans , Optical Tweezers , Pandemics , RNA, Viral/genetics , SARS-CoV-2
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: covidwho-1216492

ABSTRACT

The urgency for the development of a sensitive, specific, and rapid point-of-care diagnostic test has deepened during the ongoing COVID-19 pandemic. Here, we introduce an ultrasensitive chip-based antigen test with single protein biomarker sensitivity for the differentiated detection of both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A antigens in nasopharyngeal swab samples at diagnostically relevant concentrations. The single-antigen assay is enabled by synthesizing a brightly fluorescent reporter probe, which is incorporated into a bead-based solid-phase extraction assay centered on an antibody sandwich protocol for the capture of target antigens. After optimization of the probe release for detection using ultraviolet light, the full assay is validated with both SARS-CoV-2 and influenza A antigens from clinical nasopharyngeal swab samples (PCR-negative spiked with target antigens). Spectrally multiplexed detection of both targets is implemented by multispot excitation on a multimode interference waveguide platform, and detection at 30 ng/mL with single-antigen sensitivity is reported.


Subject(s)
Antigens, Viral/isolation & purification , Influenza A virus/isolation & purification , Microfluidic Analytical Techniques/methods , Molecular Diagnostic Techniques/methods , SARS-CoV-2/isolation & purification , Antigens, Viral/immunology , Biosensing Techniques , COVID-19/diagnosis , Fluorescence , Humans , Influenza A virus/immunology , Influenza, Human/diagnosis , Lab-On-A-Chip Devices , Limit of Detection , Nasopharynx/virology , Point-of-Care Systems , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL